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Abstract This paper investigates the microeconomics of specialization and its effects
on firm productivity. We define economies of specialization as the productivity gains
obtained under greater specialization. The paper shows how scale effects and non-
convex technology affect economies of specialization. Using a nonparametric ap-
proach, we present an empirical analysis applied to Korean farms. The results indicate
that non-convexity is prevalent especially on large farms. We find that non-convexity
generates large productivity benefits from specialization on larger farms (but not on
smaller farms), providing a strong incentive for large farms to specialize. We evaluate
the linkages between non-convexity, firm size and management.

Keywords Firm productivity . Scale . Non-convexity . Specialization

JEL D2 . L25 . Q12

Introduction

Adam Smith (1776) first pointed out that there are productivity gains from specializa-
tion. Using a pin factory as an example, Smith (1776, p. 4) argued that producing pins
in a system where workers are specialized across tasks can generate very large increases
in productivity. According to Smith (1776, p. 6–8), a key factor is the amount of time
workers spend switching from one task to another: this time can be saved under
increased specialization. Other aspects of the benefits of firm specialization relate to
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the role of knowledge and coordination cost (e.g., as emphasized by Becker and
Murphy (1992), Caliendo and Rossi-Hansberg (2012) and Garicano and Rossi-
Hansberg (2015)). Somewhat surprisingly, little empirical evidence has been presented
documenting the source or magnitude of gains from specialization at the firm level.
This suggests a need for a refined analysis of the productivity effects of specialization.
The main objective of this paper is to develop new insights into the microeconomics of
firm organization and the motivations for firm diversification/specialization strategies.1

Where do the productivity gains from firm specialization come from? This paper shows
that there are two main factors that affect the benefits of specialization: returns to scale and
nonconvexity of the technology. The role of returns to scale is not new: it has been noted in
previous literature (e.g., Stigler 1951; Melitz 2003). But other factors also play a role.
Smith’s example of a pin factory provides useful insights. Smith (1776, p. 6–8) argued that
the gains from specialization come in part from savings in time lost switching from one task
to the next. A similar argument would apply to the time used in learning how to manage a
new task (Becker and Murphy 1992; Caliendo and Rossi-Hansberg 2012; Coviello et al.
2014; Garicano and Rossi-Hansberg 2015). Since the time lost switching between tasks
(or learning to manage a new task) does not contribute to any output, this introduces fixed
cost in the analysis. This suggests that reductions in fixed cost can be important sources of
gains from specialization. This point has been made by Baumol et al. (1982, p. 75) in their
analysis of economies of scope for a multiproduct firm. Fixed cost is a well-known source
of non-convexity. Perhaps more importantly, these issues can arise independently of any
scale effects. For example, in his discussion of a pin factory, Smith does not mention any
role for firm size. This indicates that the productivity effects of specialization can be
present within a firm irrespective of scale effects. This suggests a need to explore the role
of non-convexity in the microeconomics of firm specialization.

This paper explores the microeconomics of specialization, with a focus on the role of non-
convexity. It is well known that a technology that exhibits increasing returns to scale (IRS) is
also non-convex. Yet, in this paper we stress that non-convexity can arise in ways that are
unrelated to scale effects. Indeed, IRS is a formof non-convexity that applies in a very restrictive
way: returns to scale consider only proportional changes in all inputs and outputs.We show that
other forms of non-convexity (besides IRS) can have a large influence on the gains from
specialization.More fundamentally,we think that the common idea that IRS and non-convexity
tend to go together has contributed to hiding the deeper role played by non-convexity.

This paper makes three contributions to the literature. First, it evaluates conceptually the
role played by both returns to scale and non-convexity in the economics of firm specialization.
Relying on a directional distance function, we propose a measure of gains from specialization
and use it to identify the distinct role played by returns to scale versus non-convexity. We
obtain the following key result: the gains of firm specialization are negative under IRS and a
convex technology.Alternatively, the gains of firm specialization are positive under decreasing

1 While our analysis focuses at firm level, there is an extensive literature on the aggregate benefits of
specialization. The two approaches (micro versus macro) are related. Economists have stressed the linkages
between benefits of specialization and the aggregate gains from trade (e.g., Ricardo 1817; Samuelson 1962).
Yet, some controversy remains about the magnitude of the gains from trade. The empirical measurements of
aggregate gains from trade have typically been relatively small. For example, Arkolakis et al. (2012, p. 95)
have estimated that the welfare gains from trade for the U.S. have ranged from 0.7 % to 1.4 % of income. This
has stimulated the search for new models that could generate larger gains from specialization and trade (e.g.,
Melitz 2003; Bernard et al. 2003; Melitz and Trefler 2012; Caliendo and Rossi-Hansberg 2012).
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returns to scale and a non-convex technology. Thus, our analysis shows that non-convexity
can be an important factor contributing to the gains from firm specialization. This indicates a
need to assess empirically the nature of returns and scale and non-convexity for a firm.

Our second contribution is to study the effects of non-convexity on specialization
incentives. The analysis is based on a general measure of non-convexity. The measure is
evaluated empirically using a non-parametricmethod. The non-parametricmethod is flexible
in the sense that it allows for the presence of non-convexity in any part of the technology.2 It
provides a good basis to evaluate the role of management in firm specialization decisions.

Our third contribution is to apply our approach to a sample of Korean farms. Note that
South Korea is not a developing country: it had a gross domestic product (GDP) per capita
purchasing power parity (PPP) of $33,629 in 2014 (similar to Italy or Japan). Thus, our paper
is not about economic development. Rather, we take the case of South Korean farmers as an
interesting case study on the economics of specialization. An application to farms is of
interest as most farms produce more than one output, allowing us to observe different
patterns of output specialization across farms. In addition, farms are typically family farms in
Korea where the head of the household is the manager and most labor is provided by family
labor. In this regard, we can expect the gains from specialization to be closely associatedwith
themanagerial skills of the farmmanager, i.e. his ability tomanagemultiple farm production
activities. In this context, an application of our approach to Korean farms sheds light on the
economics of specialization or diversification and the sources of specialization benefits. Our
empirical analysis documents the relative role played by returns to scale and non-convexity
on Korean farms. The results identify the presence of non-convexity as well as scale effects.
We show that non-convexity varies across farm types: non-convexity tends to be more
common on larger farms. We also find that non-convexity effects are more important than
scale effects on larger farms. It means that scale effects are not likely to be themajor or single
factor affecting firm specialization (as documented below). By showing how non-convexity
varieswith farm size, our analysis helps explainwhy larger farms tend to bemore specialized
(Chavas 2001). Finally, our application evaluates the linkages between management and
non-convexity. We find that non-convexity varies with the education and experience of the
farm manager. We also find that non-convexity generates large productivity benefits from
specialization on larger farms (but not on smaller farms), providing a strong incentive for
large farms to specialize. By evaluating the linkages between non-convexity, firm size and
management, our analysis provides new insights into the role of management and the
economics of specialization.

Microeconomics of Specialization

Consider a production process involving m netputs z ¼ z1;…; zmð Þ∈Rm. Given
z = (z1, … , zm), we use the netput notation where inputs are negative (zi ≤ 0 for
input i) and outputs are positive zj ≥ 0 for output j). The production technology
is represented by the feasible set T⊂Rm, where z ∈ T means that the netput vector
z is feasible. The set T provides a global characterization of the underlying
technology. Two specific properties of the technology will be examined in this

2 This paper is a follow-up to Kim et al. (2012a). While Kim et al. (2012a) relied on parametric methods, this
paper uses more flexible nonparametric methods to investigate the economics of specialization.
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paper: returns to scale and convexity properties. First, the technology T is said

to exhibit f increasing retruns to scale IRSð Þ
constant returns to scale CRSð Þ
decreasing returns to scale DRSð Þg if T

⊃
¼
⊂

8<
:

9=
;δ T for any scalar δ > 1;

and the technology is said to exhibit variable returns to scale (VRS) if no
a priori restriction is imposed on returns to scale. Second, the technology is said to be
convex if the set T is convex, i.e. if it satisfies [α z

a
+ (1 −α)z

b
] ∈ T for any z

a ∈ T, zb ∈ T,
and α ∈ [0, 1]. A convex technology is equivalent to the intuitive concept of “decreasing
marginal productivity.” Alternatively, the technology is non-convex if the set T is not
convex. Throughout the paper, we assume that the technology T satisfies free disposal,
where free disposal means that T ¼ T–Rm

þ.
Our analysis of the properties of the technology T will rely on specific measures.

Letting g∈Rm
þ be a reference bundle satisfying g ≠ 0 and following Chambers et al.

(1996), consider the directional distance function:
3

D z; Tð Þ ¼ supβ β : zþ βgð Þ∈Tf g if there is a scalar β satisfying zþ βgð Þ∈T;
¼ −∞otherwise: ð1Þ

The directional distance function is the distance between point z and the upper bound of the
technology T, measured in number of units of the reference bundle g. It provides a
general measure of productivity. In general, D(z,T) = 0 means that point z is on the frontier
of the technology T. Alternatively, D(z) > 0 implies that z is technically inefficient (as it is
below the frontier).4 D (z, T) < 0 identifies z as being infeasible (as it is located above the
frontier). Luenberger (1995) and Chambers et al. (1996) provide a detailed analysis of the
properties of D(z, T). First, by definition in (1), z ∈ T implies that D(z, T) ≥ 0 (since β= 0
would then be feasible in (1)), meaning that T ⊂ {z :D(z,T) ≥ 0}. Second, D(z, T) ≥ 0 in (1)
implies that [z+D(z, T)g] ∈ T. When the technology T exhibits free disposal, it follows that
D(z, T) ≥ 0 implies that z ∈ T, meaning that T ⊃ {z :D(z, T) ≥ 0}. Combining these two
properties, we obtain the following result: under free disposal, T= {z :D(z, T) ≥ 0} and
D(z, T) provides a complete representation of the technology T. Importantly, this result is
general: it allows for an arbitrary multi-input multi-output technology, and it applies with or
without convexity.

The distance functionD(z, T) in (1) can be used to evaluate economies of specialization
(Chavas andKim2007).To see that, consider twosituations: onewherenetput z is produced
by a single firm and one where z is produced by Kmore specialized firms, where the k-th
firm produced zk subject to the restriction ∑K

k¼1z
k ¼ z. Here, the constraint ∑K

k¼1z
k ¼ z

requires that the aggregate netputs are the same in both situations.
Definition 1: At points z and (z1, . . ., zK) satisfying ∑K

k¼1z
k ¼ z, define the following

measure of economies of specialization:

EP z; z1:::; zK ; T
� � ¼ ∑

K

k¼1D zk ; T
� �

−D z; Tð Þ: ð2Þ

3 The directional distance function D(z, T) in (1) is the negative of Luenberger’s shortage function (Luenberger
1995).
4 Note thatD(z, T) includes as special cases many measures of technical inefficiency that have appeared in the
literature. See the discussion presented in Chambers et al. (1996) and Färe and Grosskopf (2000).
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EP(z, z1, . . ., zK, T) in (2) provides a measure of the potential productivity gains
(expressed in number of units of the bundle g) obtained from increased specialization.
Indeed, assuming that zk ≠ z/K for some k, Eq. (2) evaluates a change in technical
inefficiency (as measured by D(⋅)) comparing two situations: one when netputs z are
produced by an integrated firm and one where netputs z are produced by K “more
specialized” firms. D(z, T) in (2) is the distance to the frontier when netputs z are
produced in an integrated production process. ∑K

k¼1D zk ; T
� �

is the distance when netputs
z are produced in K “more specialized” production processes, zk being the netputs used in
the k-th production process. Given∑K

k¼1z
k ¼ z, it follows thatEP(z, z1, . . ., zK, T) in (2) has

the following interpretation. When EP(z, z1, . . ., zK, T) > 0, the K specialized firms
(z1, . . ., zK) can produce EP additional units of g compared to an integrated firm,
implying that specialization improves productivity. It follows that EP(z, z1, . . ., zK, T) > 0
reflects economies of specialization. Alternatively, when EP(z, z1, . . ., zK, T) < 0, the
production potential of the K specialized firms (z1, . . ., zK) is reduced by |EP| units of g
compared to an integrated firm, implying that specialization reduces productivity. It follows
that EP(z, z1, . . ., zK, T) < 0 reflects diseconomies of specialization.

This is illustrated in Fig. 1 which considers the production of two outputs (y1, y2) using
inputs x, where z= (−x, y1, y2). Figure 1 involves a comparison between an integrated firm
producing outputs (y1, y2) using inputs x and two specialized firms: a firm producing outputs
(y1, 0) using inputs x/2, and a firm producing outputs (0, y2) using inputs x/2. Figure 1
compares the productivity of the integrated firm producing at pointAwith the productivity of
two specialized firms producing respectively at point C1 (with netputs z

1 = (−x/2, y1, 0)) and
point C2 (with netputs z2 = (−x/2, 0, y2)). Note that, as defined, z = z1 + z2. The
evaluation of productivity in Fig. 1 relies on the output set Y(x) = {(y1, y2) : (−x, y1, y2) ∈
T}. PointA in Fig. 1 is on the frontier ofY(x), withD(z, T) = 0. PointsC1 andC2 are below the
frontier of Y(x/2). Given a reference bundle g, the two specialized firms can increase
production by the distances (B1 C1) and (B2 C2). From Eq. (1), these two distances are
given byD(z1, T) andD(z2,T), respectively. In this case, using (2) and noting thatD(z) = 0, it
follows that EP(z, z1, z2, T) =D(z1, T) +D(z2, T) > 0 measures the potential gain in
productivity associated with producing outputs in a specialized manner. Thus, Fig. 1

Fig. 1 Evaluating the benefit of specialization: the case of two outputs (y1, y2) ∈ Y(x)
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illustrates a situation exhibiting economies of specialization, where specialization increases
productivity.

While Eq. (2) provides a basis to evaluate the gains of specialization, it does not
identify where these gains come from. We now explore the sources of these gains. We
show next that economies of specialization are closely related to two fundamental
concepts: economies of scale and convexity. The proof is in the Appendix.

Proposition 1: At points z and (z1, . . ., zK) satisfying ∑K
k¼1z

k ¼ z, economies of
specialization EP(z, z1, . . ., zK) in (2) can be decomposed as

EP z; zK ; T
� � ¼ ESc z; Tð Þ þ ECn z; z:::; zK ; T

� �
; ð3Þ

where

ESc z; Tð Þ≡K D
z

K
; T

� �
−D z; Tð Þ

≤
¼
≥

8<
:

9=
;0 under

IRS
CRS
DRS

8<
:

9=
;; ð4Þ

ECn z; z1; :::; zK; T
� � ¼ ∑

K

k−1D zk; Tð Þ−KD z

K
; T :

� �
≤
>

� �
:0

if the technology T is convex
only if the technology T is nonconvex

� � ð5Þ

Equation (3) decomposes economies of specialization EP(z, z1, . . ., zK, T) into two
additive components: the scale component ESc(z, T), and the convexity component
ECn(z, z

1, . . ., zK, T). From Eq. (4), the scale component ESc(z, T) satisfies ESc z; Tð Þ ≤f
¼ ≥g 0 under IRSf CRS DRSg. From Eq. (5), the convexity component ECn(z, z

1, . . .,
zK, T) is always non-positive under a convex technology. It implies that the convexity
component ECn(z, z

1, . . ., zK, T) can be positive only under a nonconvex technology.
By definition, diseconomies of specialization exist when EP(z, z1, . . ., zK, T) ≤ 0.

From (3)-(5), this condition always holds under non-decreasing returns to scale (i.e.,
under either IRS or CRS) and a convex technology. In such situations, there is a
disincentive for firms to specialize. Alternatively, economies of specialization exist
when EP(z, z1, . . ., zK, T) ≥ 0. From (3)-(5), this can arise under DRS or under a non-
convex technology. This result indicates that DRS and nonconvexity can provide an
incentive for firms to specialize. The decomposition given in Eq. (3) shows that both
returns to scale and convexity can affect the gains from specialization. It indicates a
need to present a separate evaluation of scale effects and nonconvexity effects in the
economic investigation of specialization. This is the topic of the next section.

Evaluating Economies of Scale and Non-Convexity

The distance function in (1) provides a convenient basis to evaluate the properties of
technology. First, it can be used to evaluate its convexity properties.

Definition 2: Let Th be the convex hull of T, with Th = {α za + (1 −α)zb : za ∈ T, zb ∈
T,α ∈ [0, 1]} ⊃ T. At point z, define the following measure of non-convexity:
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Cn zð Þ ¼ D z; Tð Þ≥0: ð6Þ

The non-negativity of Cn(z) in (6) follows from (1) and Th ⊃ T. From the definition of
convexity,Cn(z) = 0 when the technology T is convex. Alternatively,Cn(z) > 0 implies the
presence of non-convexity in T. Thus, Cn(z) in (6) can be interpreted as a local measure
(expressed innumberofunits ofg) of the strengthofdeparture fromconvexity.Themeasure
is local in the sense that it applies at point z.

Second, the distance function in (1) can be used to evaluate scale effects.
Definition 3: Let Tc be the cone of T, with Tc ¼ δ z : z∈T ; δ∈Rþf g ⊃T . At point z,

define the following measure of economies of scale:

Sc zð Þ ¼ D z; Tcð Þ−D z; Tð Þ≥0: ð7Þ

Thenon-negativity ofSc(z) in (7) follows from(1) andTc ⊃ T. From thedefinitionof returns
to scale, Sc(z) = 0 when the technology exhibits CRS. Alternatively, Sc(z) > 0 implies a
departure from constant returns to scale. Thus, Sc(z) in (7) can be interpreted as a local
measure (expressed in number of units of g) of the strength of departure from CRS. The
measure is local as it applies at point z.

Empirical Evaluation of the Technology

The empirical measurements in (6) and (7) require representations of the technology T.
Consider a data set involving observations of m netputs chosen by n firms: zi= (z1i, … ,
zmi), where zji is the j-th netput used by the i-th firm, i ∈ N = {1, … , n}. Following Varian
(1984), Färe et al. (1994) andBanker et al. (2004), consider first the following nonparametric
representations of technology:

Ts ¼
n
z : z≤∑i∈Nλi zi;λi∈ℝþ; i∈N ;∑i∈Nλi∈Ss ð8Þ

where s ∈ {v, c}, with Sv = 1 under VRS and Sc ¼ Rþ under CRS. Under free disposal,
Tv in (8) is the smallest convex set containing all data points; and Tc is the smallest
convex cone containing all data points. The representations given in (8) have been
called “Data Envelopment Analysis” (DEA). Since Sv ⊂ Sc, it follows from (8) that Tv ⊂
Tc. Note that the sets Tv and Tc are both convex.

Next, we want to consider representations of the technology that allow for non-
convexity. For that purpose, define a neighborhood of z ¼ z1;…; zmð Þ∈Rm as Br z;σð Þ
¼ z

0
: D z; z

0� �
≤r : z0∈Rm

� 	
⊂Rm, w h e r e r > 0 a n d D z; z’ð Þ ¼ Maxj

jz j–z0jj=σ j : j ¼ 1;…;m
n o

is a weighted distance between z and z′ with weights

σ ¼ σ1;…;σmð Þ∈Rm
þþ. Following Chavas and Kim (2015), let I(z, r) = {i : zi ∈

Br(z, σ), i ∈ N} ⊂ N, where I(z, r) is the set of firms in N that are located in the
neighborhood Br(z, σ) of z.

5

5 The choice of the neighborhood Br(z, σ) is further discussed below.
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Definition 4: Define a neighborhood-based representation of the technology T as

T*
rs ¼ ∪i∈NTrs zið Þ; ð9Þ

where

Trs zð Þ ¼ z : z≤∑i∈I z;tð Þλi zi;λi∈ℝþ; i∈I z; rð Þ;∑i∈I z;rð Þλi∈Ss
n o

ð10Þ

with s ∈ {v, c} and the Ss’s are defined above.
The representation of technology given in (9)-(10) is obtained in two steps. In a first

step, Eq. (10) defines Trs(z) as a local representation of the technology T in the
neighborhood of point z under free disposal and returns to scale characterized by
s ∈ {v, c}. Since Sv ⊂ Sc, it follows from (10) that Trv(z) ⊂ Trc(z). Again, note that, for a
given z, the sets Trv(z) and Trc(z) are convex. In a second step, Eq. (9) defines the set T

*
rs

as the union of the sets Trs(zi) , i ∈N. Since the union of convex sets is not necessarily
convex, it follows that T*

rs defined in (9) is not necessarily convex for each s ∈ {v, c}.
Eq. (9) is our proposed neighborhood-based representation of technology. It allows for
non-convexity to arise in any part of the feasible set. 6 The properties of T*

rs are

investigated in Chavas and Kim (2015) who argued that T*
rs provides a generic and

flexible way of introducing non-convexity in production analysis. These representa-
tions apply under alternative scale properties: under VRS when s = v (with Sv = 1), or
under CRS when s = c (with Sc ¼ Rþ).

As such, T*
rs has two useful characteristics: first, it provides a flexible representation

of non-convexity. Second, it is easy to implement empirically. Indeed, given j ∈N and
Trs(zj) in (10), the evaluation of the distance D(z, Trs(zj)) in (1) involves solving the
simple linear programming problem: D z; Trs z j

� �� � ¼ Maxβ;λ β : zþ β gð Þf
≤∑i∈I z j;rð Þλizi;λi∈Rþ; i∈I zi; rð Þ;∑i∈I z j;rð Þλi∈Ssg. It follows from (9) that D z; T*

rs

� � ¼
max

i
D z; Trs zið Þð Þf : i∈Ng. As noted above, D z; T*

rs

� �
is a measure of technical

inefficiency (expressed in number of units of the bundle g) for netput z under technol-
ogy T*

rs. It gives a basis to evaluate the scale effects Sc(z) given in (7), with Tc ¼ T*
rc

and T ¼ T*
rv.

Empirical Analysis

The analysis presented above is general: it applies to any firm, irrespective of its
institutional form or organization. This section illustrates the usefulness of our approach
through an empirical application. The application is to a panel data set of production
activities from a sample of Korean rice farms. Focusing on farms is of interest as most
farms produce more than one output, allowing us to observe different patterns of
specialization across farms. In addition, rice farms in Korea are typically family farms:

6 Nonparametric analyses of non-convex technology have been previously analyzed by Agrell et al. (2005)
and Podinovski (2005). The relationships between our approach and previous analyses are discussed in
Chavas and Kim (2015).
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as of 2014, the average cultivation size of a family farm is about 1.51 hectacres and the
average number of people engaging in farming is about 1.85 (KREI, 2015). During
2000–2010, major sociological aspects of family farm management include the aging
of farming population (the proportion of old farmers who are older than 65 has been
increased from 21.7 % at 2000 to 31.8 % at 2010) and the aging of the head of farm
households (the average age of farm household heads has increased from 56.3 at 2000
to 62.3 at 2010), the specialized farm management, and the diversified farming system
(the proportion of rice farms has been dropped to below 50 %).7 It is also noticeable that
rice farming is mostly done by farmers with higher levels of farming experiences.
Notice also that a family farm has a simple organizational structure: the head of the
household is the manager. Being a family farm, most of the labor is typically provided
by family labor, meaning that coordination issues among workers are minimal. To the
extent that labor and management are often performed for the same person, we can
expect the gains from specialization to be closely associated with the managerial skills
of the farm manager. Our empirical analysis will evaluate the nature of scale effects
Sc(⋅) given in (7) and non-convexity effects Cn(⋅) given in (6). In turn, we will examine
the factors contributing to non-convexity.

Data

The analysis uses farm household level data from Korea, data collected in a Farm
Household Economy Survey between 2003 and 2007 by the National Statistical Office
(Kim et al. 2012b). This annual survey provides data on the farm household economy
and agricultural management. The data come from a sample of 3140 farm households
surveyed annually from 314 enumeration districts. These districts are sampled first using
a proportional sampling scheme based on the number of farm households from
Agricultural Census at 2000. Although this survey includes eight different farm house-
hold types which are determined by the largest proportion of the farm household revenue
including paddy rice farming and vegetables farming, our empirical analysis focuses on
a sample of farms classified as “paddy rice farms” located in the Jeon-Nam province in
the southern part of Korea.While most farms produce more than one output, the farms in
our sample have a relatively high share of farm revenue coming from rice. The reason
why we focus only on rice farms in the Jeon-Nam province is that this area has an
extensive irrigation network supporting rice production and is known as a rice-
producing province. Moreover, being in the same region, it is relatively safe to assume
that all farms face similar agro-climatic conditions. The sample includes 86, 120, 101,
101, 122 number of rice farms for the year of 2003, 2004, 2005, 2006, and 2007,
respectively. This unbalanced panel dataset contains data on nine netputs: four outputs
and five inputs. The outputs are: rice, vegetable, livestock and other outputs. The inputs
are family labor, paddy land owned, non-paddy land owned, land rented, and other
inputs. Family labor input is measured in hours, and land inputs are measured in hectares
(ha). Other netputs are measured in value, assuming that all farmers face the same prices.
Summary statistics are presented in Table 1. The average revenue from rice production is
14,990.5 (measured in 1000 won8), accounting for 64.2 % of total farm revenue. The

7 See Kim et al. (2012b). for details.
8 Note that 1000 won (the Korean currency) = 0.89 US dollars.
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second largest source of revenue is vegetable production: 3177.0 (measured in 1000
won), accounting for 15.1% of total farm revenue. The average size of a farm is 2.58 ha.
The sample reflects the type of farms commonly found in Asia where farms are typically
small and with some degree of specialization in rice production.

Results

The analysis relies on nonparametric representations of the technology T*
rs given in (9).

The distance function D(z, T) in (1) is evaluated based on the bundle g = (g1, … , gm)
such that gi = 0 for the i-th input and gj is the sample mean for the j-th output. Thus, our
reference bundle g = (g1, … , gm) is associated with the outputs of an average farm,
leading to a simple interpretation of our directional distance estimates.9

Our neighborhood-based assessment of technology T*
rs requires the definition of a

neighborhood. LettingMj =Maxi ∈N {zji} −Mini ∈N {zji} be the sample range of the j-th
netput, we considered dividing the sample range into four equally spaced intervals and

defined neighborhoods as Br z; ⋅ð Þ ¼ z
0
: –M j

4 ≤z j–z
0
j≤

M j

4 ; j ¼ 1;…;m; z
0∈Rm

n o
. 10

Based on these neighborhoods, our empirical analysis generates farm-specific estimates
of technical inefficiency measured by D zi; T*

rs

� �
; i∈N. It permits an evaluation of farm-

specific convexity effectsCn(zi) given in (6) and of scale effects Sc(zi) given in (7), i ∈N.
The empirical analysis uses annual data on production activities from a sample of 530

Korean farms over the period 2003–2007. Our results will be evaluated for three farm
types: small farms,medium farms and large farms. Small farms are defined as farms located

Table 1 Descriptive statistics

Variables Number of
observations

Sample
mean

Standard
deviation

Minimum Maximum

rice revenue (in 1000 won) 530 14,990.6 19,413.5 603.7 161,260.9

vegetable revenue (in 1000 won) 530 3176.8 4724.3 0 39,649.2

livestock revenue (in 1000 won) 530 1659.2 3383.1 0 24,517.0

other revenue (in 1000 won) 530 3114.9 5725.3 0 73,816.2

production costs (in 1000 won) 530 10,185.9 10,763.6 617.5 72,654.9

family labor (hours) 530 891.9 565.9 71.5 3634.6

paddy land owned (in ha) 530 1.09 1.40 0 13.52

land owned except paddy land owned (in
ha) land ownedupland (in ha)

530 0.48 0.66 0 6.13

land rented (in 1000 won) 530 1.01 1.51 0 16.37

1000 won (the Korean currency) is approximately equivalent to 0.89 U.S. dollar. Data collected in a Farm
Household Economy Survey between 2003 and 2007 by the National Statistical Office in Korea

9 For example, for a given T, finding that D(i, T) = 0.2 means that the zi-th farm is technically inefficient: it
could move to the production frontier and increase its outputs by 20 % of the average outputs in the sample.
10 We also conducted the analysis based of alternative choices of neighborhoods. As discussed in Chavas and
Kim (2015), choosing smaller (larger) neighborhoods contributed to uncovering more (less) evidence of non-
convexity. The sensitivity results are available from the authors upon request.
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in the lower 30th percentile distribution of total land. Large farms are those farms located in
the top 30th percentile distribution of total land and medium farms are in between.

First, we evaluated the convexity effect Cn given in (6), with Th ¼ T*
∞s and

T ¼ T*
rs. The results are summarized in Table 2. Table 2 presents average

values of Cn for each year (2003, 2004, 2005, 2006 and 2007), for each farm
type (small, medium and large farms), and under both CRS (s = c) and VRS
(s = v). The results show that Cn varies between 0.007 and 0.177. This docu-
ments that the non-convexity effects can be large. For example, Cn = 0.177
means that non-convexity effects accounts for a 17.7 % change in the mean
value of all outputs. The estimates of Cn are fairly similar for CRS versus
VRS, indicating that the presence of non-convexity is not related to scale
effects. In general, Table 2 shows that Cn tends to be moderate for small
farms (always less than 0.03) but that they increase with farm size. Indeed,
with the exception of (2005, CRS), the largest Cn estimates are consistently
found among large farms. This provides evidence that non-convexity effects
become stronger on larger farms. It means that specialized operators tend to be
more productive on larger farms. To the extent that non-convexity comes from
the saving in fixed cost related to labor and managerial resources, this would
imply that the productivity of specialized management improve more on large
farmers. Finally, Table 2 shows that some changes in the Cn estimates over
time, although not clear patterns seem to emerge. This is consistent with a slow
technology change in rice production in Korea, reflected by a complete irriga-
tion infrastructure and high-yielding rice varieties.

Second, we evaluated the scale measure Sc given in (7), with Tc ¼ T*
rc and T ¼ T*

rv.
The results are summarized in Table 3. Table 3 presents average values of Sc for each
year (2003, 2004, 2005, 2006 and 2007), for each farm type (small, medium and large
farms), and under both convexity (when r→∞) and non-convexity. The results show
that Sc varies between 0.009 and 0.124. With the exception of (convexity, large farms,

Table 2 Average non-convexity effects Cn(⋅) under CRS and VRS, by farm size over time

2003 2004 2005 2006 2007

Under CRS (with Sc =ℝ)

Small farm 0.021 0.012 0.017 0.016 0.007

Medium farm 0.026 0.058 0.069 0.051 0.036

Large farm 0.103 0.143 0.067 0.177 0.113

Under VRS (with Sv = 1)

Small farm 0.015 0.007 0.010 0.008 0.006

Medium farm 0.030 0.062 0.068 0.053 0.038

Large farm 0.051 0.143 0.086 0.144 0.080

Farm size is identified by the size of total land. Small farms are defined as farms being in the 0 to 30 percentile
of the sample distribution of farm size, medium farms are between the 30 percentile and 70 percentile, and
large farms are in the 70 to 100 percentile. These results are based on data collected in a Farm Household
Economy Survey between 2003 and 2007 by the National Statistical Office in Korea
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2007), the Sc’s are all below 0.10. This documents that scale effects are present, but that
the magnitude of scale inefficiency is moderate. For example, Sc = 0.009 (convexity,
medium farm, 2004) means that scale inefficiency amounts to a 0.9 % change in the
mean value of all outputs. As might be expected, Table 3 shows that most of the scale
inefficiency is due to IRS for small farms, but DRS for large farms. As discussed above,
we expect DRS (IRS) to contribute positively (negatively) to economies of specializa-
tion. As a result, scale effects would provide incentives for large farms to specialize.
Yet, the relative small magnitudes of Sc indicate that scale effects are moderate, which
is consistent with long-lasting small-scale rice farming in Korea. They tend to be
smaller than the non-convexity effects Cn reported in Table 2. It generates one of our
key findings: convexity effects tend to dominate scale effects in Korean agriculture. In
other words, while scale effects can affect the gains from specialization, our results
point to a dominant role played by non-convexity. From Table 3, these results seem to
hold both under a convex technology and a non-convex technology, indicating that
scale effects appear to be unrelated to non-convexity. Finally, Table 3 shows some
changes in the Sc estimates over time, although not clear patterns seem to emerge. This
may reflect slow technology change in rice production in Korea.

Next, we examined the factors associated with non-convexity. Using our farm-
specific estimates of Cn, we regressed them on selected explanatory variables. Since

Table 3 Average scale effects Sc(⋅) under alternative representations of the technology, by farm size over time

2003 2004 2005 2006 2007

Under convexity: Tv versus Tc

Small farms

Average Sc(⋅) 0.021 0.017 0.021 0.017 0.017

Sc(⋅) due to IRS 0.018 0.017 0.020 0.016 0.015

Sc(⋅) due to DRS 0.003 0.0000 0.001 0.001 0.002

Medium farms

Average Sc(⋅) 0.041 0.009 0.033 0.020 0.023

Sc(⋅) due to IRS 0.002 0.005 0.013 0.015 0.007

Sc(⋅) due to DRS 0.039 0.004 0.020 0.005 0.016

Large farms

Average Sc(⋅) 0.084 0.047 0.031 0.089 0.124

Sc(⋅) due to IRS 0.001 0.002 0.007 0.001 0.001

Sc(⋅) due to DRS 0.083 0.045 0.024 0.088 0.123

Under non-convexity: T*
rv versus T

*
rc

Average Sc(⋅)
For small farms 0.015 0.011 0.014 0.009 0.017

For medium farms 0.046 0.013 0.032 0.023 0.025

For large farms 0.032 0.046 0.050 0.056 0.090

Farm size is identified by the size of total land. Small farms are defined as farms being in the 0 to 30 percentile
of the sample distribution of farm size, medium farms are between the 30 percentile and 70 percentile, and
large farms are in the 70 to 100 percentile. These results are based on data collected in a Farm Household
Economy Survey between 2003 and 2007 by the National Statistical Office in Korea
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the Cn’s have zero as a lower bound, we use censored or Tobit regression. If non-
convexity is associated with the saving in fixed cost related to labor and managerial
resources, then the rise of non-convexity would likely be linked with human capital. On
that basis, we include age, schooling, and their interactions as explanatory variables in
the Tobit model. We also include farm size as an explanatory variable. Summary
statistics for these variables are presented in Table 4.

We estimated the Tobit model using the Cn estimates obtained under CRS as well as
VRS. The Tobit estimates are reported in Table 5. The estimates show that age,
schooling and their interaction have each statistically significant effects on non-con-
vexity. This is consistent with our interpretation of non-convexity being associated with
saving in fixed cost related to labor and managerial resources. Our results indicate that
managerial ability likely changes with both experience and education. Interestingly, due
to the interaction effects, the marginal impacts of age or schooling on non-convexity
can be either positive or negative. The marginal impact of age is found to be negative
but only for “low schooling.” Similarly, the impact of schooling is found to be negative
but only for young individuals. Evaluated at sample mean of schooling, we found a
negative relationship between age and non-convexity. This indicates that younger
individuals have more incentive to specialize in rice production holding other variables
constant. Evaluated at sample mean of age, we found a positive relationship between
schooling and non-convexity. This implies that education contributes to specialization
in rice production. To the extent that non-convexity contributes to gains from special-
ization, our results indicate that young and better educated individuals would have
more incentive to specialize. Given the fact that larger rice farms are generally operated
by relatively younger individuals seeking specialization benefits associated with rice
farming by increasing the size of paddy land, this result seems plausible in a Korean
rice production context. Alternatively, older and less educated individuals would have
less incentive to specialize. This suggests that the pattern of specialization varies with
education and with the life cycle of individuals. The Tobit estimates reported in Table 5
also show that non-convexity is more prevalent on farms that specialized in rice. This
likely reflects the presence of fixed cost associated with rice production. Finally,
Table 5 shows that farm size has a strong and positive relationship with non-convexity.
This is consistent with the results reported in Table 2: non-convexity effects are more
important for large farms, suggesting that the productivity of specialized management
improves for larger farmers.

Table 4 Descriptive statistics for the analysis of non-convexity

Variable Obs. Sample mean Std. deviation Min. Max.

Non-convexity 530 0.060 0.138 0.000 1.201

Age 530 63.29 9.32 39.00 85.00

Years of schooling 530 6.78 3.77 0.00 16.00

Farm size 530 2.57 2.69 0.18 22.62

Time trend 530 3.10 1.41 1.00 5.00

Rice revenue ratio 530 0.64 0.16 0.28 1.00

These results are based on data collected in a Farm Household Economy Survey between 2003 and 2007 by
the National Statistical Office in Korea
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Finally, simulations of economies of specialization (EP given in (2)) and its scale
component (ESc given in (4)) and convexity component (ECn given in (5)) are
presented in Table 6 for selected farm types. Two farm types are evaluated: a
moderate-size farm with 1.77 ha of land, and a large farm size with 5.23 ha of land.
The simulation involves two specialization schemes (K = 2), with z1 being specialized
in rice and z2 being specialized in other (non-rice) activities. 11 Table 6 reports
economies of specialization for the large farm (with EP = 0.608), but diseconomies
of specialization for the moderate-size farm (with EP = − 0.262). Importantly, these
specialization effects are large. For example, the reference bundle g representing
average farm outputs in the sample, EP = 0.608 measures productivity effects
amounting to a 60.8 % increase in average revenue. This illustrates that the incentives
to specialize are strong on large farms but not on smaller farms. Table 6 also shows that
the scale component ESc is negative for both farm types (ESc = − 0.091 for moderate
size, and ESc = − 0.137 for large farm). From Eq. (4), this corresponds to situations of
IRS, which tends to reduce the benefit of specialization. Finally, Table 6 shows that the
convexity component ECn is negative for the moderate-size farm (ECn = − 0.171), but
positive for the large farm (ECn = 0.745). As stated in Eq. (5) above, ECn is necessarily
negative under a convex technology, and it can turn positive only in the presence of
non-convexity. Thus, Table 6 shows two important results: 1/ the productivity benefits
of specialization come in large part from non-convexity; and 2/ non-convexity is
prevalent in large farms but not in smaller farms. This documents the role of non-
convexity and its effects on the incentive for farms to specialize. It reveals significant
productivity benefits from specialized management on larger farms, providing a strong
incentive for large farms to specialize.

11 In the simulation, the specialized netputs z1 and z2 are defined as follows. Compared to the original farm (z),
the farm specialized in rice (z1) produces 70 % of the rice output, 30 % of the non-rice outputs, and 50 % of
inputs. Compared to the original farm, the farm specialized in non-rice (z2) produces 30 % of the rice output,
70 % of the non-rice outputs, and 50 % of inputs. In a way consistent with Eq. (2), this guarantees that z = z1 +
z2. We chose this pattern of partial output specialization as no farm in our sample was observed to be
completely specialized (i.e., producing only rice or only non-rice outputs).

Table 5 Tobit estimation of factors affecting non-convexity (dependent variable = Cn)

Variables (a) Under CRS (b) Under VRS

Coefficients Standard errors Coefficients Standard errors

Intercept 0.188 0.186 0.086 0.212

Age -0.006** 0.003 -0.006** 0.023

Schooling -0.049** 0.020 -0.048** 0.023

Age*Schooling 0.001** 0.000 0.001** 0.000

Farm size 0.014*** 0.005 0.007 0.005

Time trend 0.004 0.008 0.004 0.010

Rice revenue ratio 0.202*** 0.075 0.263*** 0.087

Sigma 0.230 0.011 0.252 0.014

Stars denote the significance level: *** for the 1 % significance level; ** for the 5 % significance level; and *
for the 10 % significance level. These results are based on data collected in a Farm Household Economy
Survey between 2003 and 2007 by the National Statistical Office in Korea
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Concluding Remarks

This paper has presented an analysis of the microeconomics of firm specialization. We
have proposed a measure of economies of specialization, reflecting the productivity
effects of greater firm specialization. We have identified the distinct role played by
returns to scale versus non-convexity. Our conceptual analysis showed that disecon-
omies of firm specialization occur under IRS and a convex technology. Alternatively,
economies of firm specialization arise under decreasing returns to scale and a non-
convex technology. This indicates a need for a combined empirical assessment of the
nature of returns to scale and non-convexity. In this context, we developed measures of
economies of scale and non-convexity and proposed methods to evaluate them
empirically.

The usefulness of the approach was illustrated in an empirical application to a data
set of Korean farms. The analysis documented the presence of non-convexity as well as
scale effects. We showed that non-convexity varies across farm types. Non-convexity
was found to be more common on larger farms, indicating that specialized operators
have a greater ability to improve productivity on larger farms. We also found that non-
convexity effects are more important than scale effects on larger farms. This has two
implications. First, it means that scale effects are not the major factor affecting farm
specialization. Second, the changes in non-convexity effects across farm size can help
explain why larger farms tend to be more specialized. Our empirical analysis also
evaluates the linkages between management and non-convexity. Most farms being
family farms, we find that non-convexity varies with the education and experience of
the farm manager. This provides new insights into the role of management and its
implications for firm productivity and the economics of specialization.

Our analysis could be extended in several directions. First, the gains of specialization
need to be analyzed at the aggregate level. This means examining how the micro effects
analyzed in this paper translate into macro effects (e.g., in the analysis of gains from
trade). Second, our application has focused on agriculture. There is a need to expand
the empirical analysis to other industries. Third, there is a need for further investigations
of the linkages between management and specialization gains. Exploring these issues
appears to be good topics for future research.

Table 6 Simulations of EP, ESc and ECn for selected farm types

Economies of
specialization EP

Scale component ESc Convexity component ECn

EP=∑kD(z
k, T) –D(z, T) ESc =K D(z/K, T) –D(z, T) ECn =∑kD(z

k,
T) –K D(z/K, T)

Moderate-size farm -0.262 -0.091 -0.171

Large farm 0.608 -0.137 0.745

The farm size is 1.77 ha for a moderate-size farm and 5.23 ha for a large farm. The simulated specialization
schemes are: K = 2, with z1 being specialized in rice and z2 being specialized in other (non-rice) activities.
These results are based on data collected in a Farm Household Economy Survey between 2003 and 2007 by
the National Statistical Office in Korea
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Appendix

Proof of Proposition 1: Eq. (2) can be alternatively written as
EP z; z1; :::; zK ; Tð Þ ¼ ∑K

k¼1D zk ; T
� �

–K D z=K; Tð Þ þ K D z=K; Tð Þ–D z; Tð Þ. G i v e n
(4) and (5), this gives the decomposition in (3).

For K> 1, note that T
⊃
¼
⊂

8<
:

9=
; K T under

IRS
CRS
DRS

8<
:

9=
;. It follows from (1) that

D z; Tð Þ ¼ sup
β

β : zþ β gð Þ∈Tf g
≥
¼
≤

8<
:

9=
; sup

β
β : zþ β gð Þf ∈K Tgunder IRSf CRS

DRSg. Letting b=β/K, we have sup
β

β : zþ β gð Þf ∈K Tg ¼ K sup
b

b : z=K þ b gð Þf
∈Tg ¼ K D z=K; Tð Þ. Combining these results gives the inequalities in (4).

From (1) , we have D zk ; T
� � ¼ sup

βk

βk : zk þ βk g
� �

∈T
� 	

and ∑K
k¼1 1=Kð Þ

D zk ; T
� � ¼ sup

β
∑K

k¼1βk=K : zk þ βk g
� �

∈T ; k ¼ 1;…;K
� 	

. Assume that the set T

is convex. Then, (zk + βk g) ∈ T for all k implies that ∑K
k¼1 zk=K þ βk=Kð Þg
 �

∈T .
L e t t i n g α ¼ ∑K

k¼1βk=K, i t f o l l o w s t h a t sup
β

∑K
k¼1βk=K : zk

��
þβk gÞ∈T ; k ¼ 1;…;Kg≤ sup

α
α : ∑K

k¼1zk=K þ α g
� �

∈T
� 	 ¼ D ∑K

k¼1zk=K; T
� �

.

When z ¼ ∑K
k¼1z

k , this yields ∑K
k¼1 1=Kð Þ D zk ; T

� �
≤D z=K; Tð Þ, which gives the first

inequality in (5).
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